metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yu-Xi Sun,* Gen-Zhi Gao, Hong-Xia Pei and Rui Zhang

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.007 \text{ Å}$ R factor = 0.050 wR factor = 0.105Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Aqua[4-bromo-2-(pyridin-2-ylmethyliminomethyl)phenolato]copper(II) nitrate monohydrate

The title compound, $[Cu(C_{13}H_{10}BrN_2O)(H_2O)](NO_3) \cdot H_2O$, is a mononuclear copper(II) complex. The Cu^{II} atom is fourcoordinated by two N atoms and one O atom from the Schiff base ligand, and another O atom from a coordinated water molecule, forming a slightly distorted square-planar coordination configuration. In the crystal structure, all the O atoms in the nitrate anions and water molecules contribute to hydrogen bonds, leading to the formation of a two-dimensional network. Received 10 January 2005 Accepted 19 January 2005 Online 29 January 2005

Comment

Copper compounds are present in the active sites of several important classes of metalloproteins. The study of copper compounds is of great interest in various aspects of chemistry (Downing & Urbach, 1969; Ganeshpure *et al.*, 1996; Bosnich, 1968; Costes *et al.*, 1995).

The structure of the title complex, (I), consists of a mononuclear $[Cu(C_{13}H_{10}BrN_2O)(H_2O)]^+$ cation, a nitrate anion and an uncoordinated water molecule (Fig. 1). The Cu^{II} atom is four-coordinated by two N atoms and one O atom from the

Figure 1 phy The molecula

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of (I), viewed along the *a* axis. The intermolecular O-H···O hydrogen bonds are shown as dashed lines.

Schiff base ligand, and another O atom from a coordinated water molecule, forming a slightly distorted square-planar coordination configuration. The four coordinating atoms around the Cu centre are approximately coplanar, with an square-planar configuration with an average deviation of 0.071 (6) Å; the Cu atom lies 0.061 (3) Å above this plane. The Cu1-N2 bond [1.977 (4) Å; Table 1] is comparable with the corresponding value [1.979 (2) Å] observed in a similar copper(II) complex (You & Zhu, 2004). The Cu1-N1 bond length [1.934 (4) Å] is a little longer than the value [1.927 (3) Å] observed in another Schiff base complex (You et al., 2004). The Cu1-O1 bond length [1.902 (2) Å] is comparable with the value [1.889 (2) Å] observed in the same complex mentioned above (You et al., 2004). The bond angles around the Cu^{II} centre show some deviations from ideal square-planar geometry.

In the crystal structure of (I), the molecules are linked via intermolecular O-H···O hydrogen bonds, forming a twodimensional network (Table 2 and Fig. 2).

Experimental

2-Aminomethylpyridine (0.1 mmol, 10.8 mg) and 5-bromosalicylaldehyde (0.1 mmol, 20.1 mg) were dissolved in methanol (10 ml). The mixture was stirred for 10 min to give a clear yellow solution. To this solution was added a methanol solution (10 ml) of $Cu(NO_3)_2 \cdot 3H_2O$ (0.1 mmol, 24.2 mg), with stirring. The mixture was stirred for another 10 min to give a clear blue solution, which was Z = 2

 $D_x = 1.909 \text{ Mg m}^{-3}$

Cell parameters from 1283

0.17 \times 0.13 \times 0.12 mm

3532 independent reflections 2255 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.4 - 21.7^{\circ}$ $\mu=3.97~\mathrm{mm}^{-1}$

T = 295 (2) K

Block, blue

 $R_{\rm int}=0.055$ $\theta_{\rm max} = 27.5^\circ$ $h = -10 \rightarrow 10$ $k = -11 \rightarrow 11$ $l = -15 \rightarrow 15$

Crystal data

 $[Cu(C_{13}H_{10}BrN_2O)(H_2O)](NO_3)$ -- H_2O $M_r = 451.72$ Triclinic, P1 a = 7.838 (2) Å b = 9.039 (2) Å c = 11.988 (2) Å $\alpha = 106.95 (1)^{\circ}$ $\beta = 102.77 (1)^{\circ}$ $= 93.04 (1)^{\circ}$ V = 786.0 (3) Å³

Data collection

Bruker APEX area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.530, \ T_{\max} = 0.623$
9036 measured reflections

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.050$	independent and constrained
$wR(F^2) = 0.105$	refinement
S = 0.98	$w = 1/[\sigma^2(F_0^2) + (0.0388P)^2]$
3532 reflections	where $P = (F_0^2 + 2F_c^2)/3$
229 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

- Cu1-01	1 889 (3)	Cu1_02	1 973 (3)
Cu1-N1	1.934 (4)	Cu1-N2	1.975 (3)
O1-Cu1-N1	93.82 (14)	O1-Cu1-N2	176.73 (14)
O1-Cu1-O2	88.90 (14)	N1-Cu1-N2	83.02 (15)
N1-Cu1-O2	171.79 (15)	O2-Cu1-N2	94.35 (15)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2B \cdots O6^{i} 06 - H6B \cdots O1^{ii} 02 - H2C \cdots O3 02 - H2C \cdots O5 06 - H6A \cdots O4$	0.84 (4) 0.84 (4) 0.85 (5) 0.85 (5) 0.85 (5)	1.84 (5) 2.104 (16) 2.56 (5) 1.81 (5) 1.96 (5)	2.658 (5) 2.930 (5) 3.019 (5) 2.650 (5) 2.776 (6)	165 (5) 169 (5) 116 (5) 170 (5) 165 (6)

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y, -z + 1.

The H atoms of the water molecules were located in a difference Fourier map and refined isotropically, with $U_{iso}(H)$ values fixed at 0.08 Å^2 , and with O-H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93-0.97 Å and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C}).$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve

metal-organic papers

structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank Qufu Normal University for funding this study.

References

Bruker. (2002). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Bosnich, B. (1968). J. Am. Chem. Soc. 90, 627-632.

- Costes, J. P., Dominiguez-Vera, J. M. & Laurent, J. P. (1995). Polyhedron. 14, 2179–2187.
- Downing, R. S. & Urbach, F. L. (1969). J. Am. Chem. Soc. 91, 5977-5983.
- Ganeshpure, P. A., Tembe, G. L. & Satish, S. (1996). J. Mol. Catal. A, 113, L423–L425.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997*a*). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS, Inc., Madison, Wisconsin, USA.
- You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884– m886.
- You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1079-m1080.